Cart (Loading....) | Create Account
Close category search window
 

An integrated runtime and compile-time approach for parallelizing structured and block structured applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Agrawal, G. ; Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA ; Sussman, A. ; Saltz, J.

In compiling applications for distributed memory machines, runtime analysis is required when data to be communicated cannot be determined at compile-time. One such class of applications requiring runtime analysis is block structured codes. These codes employ multiple structured meshes, which may be nested (for multigrid codes) and/or irregularly coupled (called multiblock or irregularly coupled regular mesh problems). In this paper, we present runtime and compile-time analysis for compiling such applications on distributed memory parallel machines in an efficient and machine-independent fashion. We have designed and implemented a runtime library which supports the runtime analysis required. The library is currently implemented on several different systems. We have also developed compiler analysis for determining data access patterns at compile time and inserting calls to the appropriate runtime routines. Our methods can be used by compilers for HPF-like parallel programming languages in compiling codes in which data distribution, loop bounds and/or strides are unknown at compile-time. To demonstrate the efficacy of our approach, we have implemented our compiler analysis in the Fortran 90D/HPF compiler developed at Syracuse University. We have experimented with a multi-bloc Navier-Stokes solver template and a multigrid code. Our experimental results show that our primitives have low runtime communication overheads and the compiler parallelized codes perform within 20% of the codes parallelized by manually inserting calls to the runtime library

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:6 ,  Issue: 7 )

Date of Publication:

Jul 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.