By Topic

Improving performance in pulse radar detection using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Deergha Rao, K.. ; R&T Unit for Navigational Electron., Osmania Univ., Hyderabad ; Sridhar, G.

A new approach using a multilayered feed forward neural network for pulse compression is presented. The 13 element Barker code was used as the signal code. In training this network, the extended Kalman filtering (EKF)-based learning algorithm which has faster convergence speed than the conventional backpropagation (BP) algorithm was used. This approach has yielded output peak signal to sidelobe ratios which are much superior to those obtained with the BP algorithm. Further, for use of this neural network for real time processing, parallel implementation of the EKF-based learning algorithm is indispensable. Therefore, parallel implementation has also been developed

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:31 ,  Issue: 3 )