By Topic

An on-line adaptation method in a neural network based control system for AUVs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ishii, K. ; Inst. of Ind. Sci., Tokyo Univ., Japan ; Fujii, T. ; Ura, T.

A neural network based control system “Self-Organizing Neural-Net-Controller System: SONCS” has been developed as an adaptive control system for Autonomous Underwater Vehicles (AUVs). In this paper, an on-line adaptation method “Imaginary Training” is proposed to improve the time-consuming adaptation process of the original SONCS. The Imaginary Training can be realized by a parallel structure which enables the SONCS to adjust the controller network independently of actual operation of the controlled object. The SONCS is divided into two separate parts: the Real-World Part where the controlled object is operated according to the objective, and the Imaginary-World Part where the Imaginary Training is carried out. In order to adjust the controller network by the Imaginary Training, it is necessary to introduce a forward model network which can generate simulated state variables without involving actual data. A neural network “Identification Network” which has a specific structure to simulate the behavior of dynamical systems is proposed as the forward model network. The effectiveness of the Imaginary Training is demonstrated by applying to the heading keeping control of an AUV “Twin-Burger”. It is shown that the SONCS adjusts the controller network-through on-line processes in parallel with the actual operation

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:20 ,  Issue: 3 )