By Topic

Application of neural and statistical classifiers to the problem of seafloor characterization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Michalopoulou, Z.-H. ; Dept. of Math., New Jersey Inst. of Technol., Newark, NJ, USA ; Alexandrou, D. ; de Moustier, C.

In this paper neural and statistical classifiers are applied to the problem of seafloor classification. The feature vectors used consist of acoustic backscatter as a function of angle of incidence. Simulated seafloor backscatter is obtained by employing the Helmholtz-Kirchhoff approximation and the statistical properties of bottom reverberation. These synthetic data are used initially to train multilayer perceptrons and then to test them for their ability to discriminate among signal returns produced by seafloors with different roughness parameters. The same data are also processed with optimum Bayesian classifiers. A comparison of the results indicates a suboptimum performance for the perceptrons. The same procedures are applied to real data collected by the Sea Beam bathymetric system over two Central North Pacific seamounts. In this case, the perceptron performance is similar to that of the statistical classifier, which is no longer optimum, since no prior knowledge of the probability distribution parameters is available. In addition, Self Organizing Maps are applied to both synthetic and real data and are shown to result in a successful separation of the output space into distinct regions corresponding to different seafloor classes

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:20 ,  Issue: 3 )