Cart (Loading....) | Create Account
Close category search window
 

Multi-path arrival estimates using simulated annealing: application to crosshole tomography experiment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Blackowiak, A.D. ; Dept. of Theor. & Appl. Mech., Cornell Univ., Ithaca, NY, USA ; Rajan, S.

In the analysis of crosshole tomography data, the first step is to estimate the arrival time and amplitude of the multi-path arrivals which comprise the received signal. Normally algorithms such as matched filter are used to determine the arrival times. However, when the bandwidth of the signal is small, this method cannot resolve closely spaced arrivals. We, therefore, investigate the performance of a simulated annealing algorithm in estimating the amplitude scaling factors and delay times of the separate arrivals in a signal composed of closely spaced arrivals with added noise. The algorithm is applied to field data collected during a crosshole tomography experiment conducted in sea ice

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:20 ,  Issue: 3 )

Date of Publication:

Jul 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.