Cart (Loading....) | Create Account
Close category search window
 

An accurate worst case timing analysis for RISC processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Sung-Soo Lim ; Dept. of Comput. Eng., Seoul Nat. Univ., South Korea ; Young Hyun Bae ; Gyu Tae Jang ; Byung-Do Rhee
more authors

An accurate and safe estimation of a task's worst case execution time (WCET) is crucial for reasoning about the timing properties of real time systems. In RISC processors, the execution time of a program construct (e.g., a statement) is affected by various factors such as cache hits/misses and pipeline hazards, and these factors impose serious problems in analyzing the WCETs of tasks. To analyze the timing effects of RISC's pipelined execution and cache memory, we propose extensions to the original timing schema where the timing information associated with each program construct is a simple time bound. In our approach, associated with each program construct is worst case timing abstraction, (WCTA), which contains detailed timing information of every execution path that might be the worst case execution path of the program construct. This extension leads to a revised timing schema that is similar to the original timing schema except that concatenation and pruning operations on WCTAs are newly defined to replace the add and max operations on time bounds in the original timing schema. Our revised timing schema accurately accounts for the timing effects of pipelined execution and cache memory not only within but also across program constructs. The paper also reports on preliminary results of WCET analysis for a RISC processor. Our results show that tight WCET bounds (within a maximum of about 30% overestimation) can be obtained by using the revised timing schema approach

Published in:

Software Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 7 )

Date of Publication:

Jul 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.