By Topic

A monolithic integrated millimeter wave transmitter for automotive applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
A. Stiller ; Lehrstuhl fur Hochfrequenztech., Tech. Univ. Munchen, Germany ; E. M. Biebl ; J. -F. Luy ; K. M. Strohm
more authors

An integrated transmitter at 80 GHz is presented. This device finds many applications in civil sensor and communication systems, and is employed in automotive applications. The device consists of an IMPATT diode and a slotted patch resonator. The resonator acts simultaneously as an antenna. The resonator impedance seen by the IMPATT diode is calculated by means of a full wave analysis and the matching of the IMPATT diode is investigated using a large signal analysis. The transmitter devices have been fabricated employing a SIMMWIC (silicon millimeter wave integrated circuit) fabrication process and deliver a radiated power of up to 1 mW at 79 GHz. An excellent carrier-to-noise ratio of 81.7 dBc/Hz at an offset of 100 kHz has been achieved. The deviation of the measured values from the theoretically predicted values of frequency and power is -5.9% and -1.5 dB, respectively

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:43 ,  Issue: 7 )