By Topic

Optimal Gabor filters for texture segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dunn, D. ; Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA, USA ; Higgins, W.E.

Texture segmentation involves subdividing an image into differently textured regions. Many texture segmentation schemes are based on a filter-bank model, where the filters, called Gabor filters, are derived from Gabor elementary functions. The goal is to transform texture differences into detectable filter-output discontinuities at texture boundaries. By locating these discontinuities, one can segment the image into differently textured regions. Distinct discontinuities occur, however, only if the Gabor filter parameters are suitably chosen. Some previous analysis has shown how to design filters for discriminating simple textures. Designing filters for more general natural textures, though, has largely been done ad hoc. We have devised a more rigorously based method for designing Gabor filters. It assumes that an image contains two different textures and that prototype samples of the textures are given a priori. We argue that Gabor filter outputs can be modeled as Rician random variables (often approximated well as Gaussian rv's) and develop a decision-theoretic algorithm for selecting optimal filter parameters. To improve segmentations for difficult texture pairs, we also propose a multiple-filter segmentation scheme, motivated by the Rician model. Experimental results indicate that our method is superior to previous methods in providing useful Gabor filters for a wide range of texture pairs

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 7 )