By Topic

Nonlinear image recovery with half-quadratic regularization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Geman, D. ; Dept. of Math. & Stat., Massachusetts Univ., Amherst, MA, USA ; Chengda Yang

One popular method for the recovery of an ideal intensity image from corrupted or indirect measurements is regularization: minimize an objective function that enforces a roughness penalty in addition to coherence with the data. Linear estimates are relatively easy to compute but generally introduce systematic errors; for example, they are incapable of recovering discontinuities and other important image attributes. In contrast, nonlinear estimates are more accurate but are often far less accessible. This is particularly true when the objective function is nonconvex, and the distribution of each data component depends on many image components through a linear operator with broad support. Our approach is based on an auxiliary array and an extended objective function in which the original variables appear quadratically and the auxiliary variables are decoupled. Minimizing over the auxiliary array alone yields the original function so that the original image estimate can be obtained by joint minimization. This can be done efficiently by Monte Carlo methods, for example by FFT-based annealing using a Markov chain that alternates between (global) transitions from one array to the other. Experiments are reported in optical astronomy, with space telescope data, and computed tomography

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 7 )