By Topic

Projection-based spatially adaptive reconstruction of block-transform compressed images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yongyi Yang ; Dept. of Electr. & Comput. Eng., Illinois Inst. of Technol., Chicago, IL, USA ; Galatsanos, N.P. ; Katsaggelos, A.K.

At the present time, block-transform coding is probably the most popular approach for image compression. For this approach, the compressed images are decoded using only the transmitted transform data. We formulate image decoding as an image recovery problem. According to this approach, the decoded image is reconstructed using not only the transmitted data but, in addition, the prior knowledge that images before compression do not display between-block discontinuities. A spatially adaptive image recovery algorithm is proposed based on the theory of projections onto convex sets. Apart from the data constraint set, this algorithm uses another new constraint set that enforces between-block smoothness. The novelty of this set is that it captures both the local statistical properties of the image and the human perceptual characteristics. A simplified spatially adaptive recovery algorithm is also proposed, and the analysis of its computational complexity is presented. Numerical experiments are shown that demonstrate that the proposed algorithms work better than both the JPEG deblocking recommendation and our previous projection-based image decoding approach

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 7 )