Cart (Loading....) | Create Account
Close category search window
 

An efficient representation of nonstationary signals using mixed-transforms with applications to speech

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mikhael, W.B. ; Dept. of Electr. Eng., Univ. of Central Florida, Orlando, FL, USA ; Ramaswamy, A.

A useful technique is presented to efficiently represent nonstationary signals by combining the wavelet and mixed-transforms. First, the signal is split into subbands using the discrete wavelet transform. Specifically, the subband splitting is performed by employing the scaling and the wavelet functions to low-pass and high-pass filter the signal. Next, each of these subbands is represented using superimposed partial sets of basis functions of different transforms, which are in general, mutually nonorthogonal. This is termed the mixed-transforms representation. The residual error, which is the difference between the original subband and the reconstructed subband is properly formulated. Adaptive algorithms are developed to minimize this error and to maximize the Signal to Noise ratio (SNR) of the reconstructed subband for a fixed number of transform components. An optimization strategy is also proposed to select the dominant components from the various domains for adaptation. These efficiently represented subbands are finally combined to reconstruct the signal. Sample results for representing voiced and unvoiced speech signals are given to illustrate the accuracy of the proposed method. A specific class of scaling and wavelet functions are employed in conjunction with the mixed Fourier/Haar transforms. It is verified that for a given number of coefficients, the proposed technique yields a significantly higher SNR of the reconstructed signal than using mixed-transforms alone or the wavelet transform followed by a single transform. Performance comparison is also presented for two different orders of scaling functions belonging to the same family

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:42 ,  Issue: 6 )

Date of Publication:

Jun 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.