By Topic

Neural network-based self-organizing fuzzy controller for transient stability of multimachine power systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hong-Chan Chang ; Dept. of Electr. Eng., Nat. Taiwan Inst. of Technol., Taipei, Taiwan ; Mang-Hui Wang

An efficient self-organizing neural fuzzy controller (SONFC) is designed to improve the transient stability of multimachine power systems. First, an artificial neural network (ANN)-based model is introduced for fuzzy logic control. The characteristic rules and their membership functions of fuzzy systems are represented as the processing nodes in the ANN model. With the excellent learning capability inherent in the ANN, the traditional heuristic fuzzy control rules and input/output fuzzy membership functions can be optimally tuned from training examples by the backpropagation learning algorithm. Considerable rule-matching times of the inference engine in the traditional fuzzy system can be saved. To illustrate the performance and usefulness of the SONFC, comparative studies with a bang-bang controller are performed on the 34-generator Taipower system with rather encouraging results

Published in:

Energy Conversion, IEEE Transactions on  (Volume:10 ,  Issue: 2 )