Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Automatic symbolic analysis of switched-capacitor filtering networks using signal flow graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fino, M.H. ; Dept. of Electr. Eng., Lisbon New Univ., Quinta da Torre, Portugal ; Franca, J.E. ; Steiger-Garcao, A.

Signal flow graphs (SFG's) are a powerful technique to analyze switched-capacitor (SC) circuits in a way that provides in-depth information about their operation and direct access to the corresponding symbolic z-transfer functions. Due to lengthy and error-prone symbolic manipulations this is manually manageable for simple first- or second-order circuits, but becomes unpractical for manipulating higher-order circuits which can not be decomposed into first- and second-order ones. Hence, there is an important need to provide designers with a computer-aided tool for the SFG symbolic analysis of a broad class of SC filtering networks, as described in this paper. Rule-based techniques are employed to capture from arbitrary circuit schematic and timing diagrams the corresponding symbolic SFG leading to the automatic generation of the associated z-transfer function. Symbols can then be instantiated to numerical values to obtain measurable data on a variety of performance indicators such as total capacitor area and capacitance spread as well as the resulting nominal frequency response and its variability against component errors. This is illustrated considering a variety of examples of SC filtering networks including, besides the more traditional filters, both finite and infinite impulse response decimators

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:14 ,  Issue: 7 )