By Topic

Automatic pattern recognition: a study of the probability of error

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
L. Devroye ; Sch. of Comput. Sci., McGill Univ., Montreal, Que., Canada

A test sequence is used to select the best rule from a class of discrimination rules defined in terms of the training sequence. The Vapnik-Chervonenkis and related inequalities are used to obtain distribution-free bounds on the difference between the probability of error of the selected rule and the probability of error of the best rule in the given class. The bounds are used to prove the consistency and asymptotic optimality for several popular classes, including linear discriminators, nearest-neighbor rules, kernel-based rules, histogram rules, binary tree classifiers, and Fourier series classifiers. In particular, the method can be used to choose the smoothing parameter in kernel-based rules, to choose k in the k-nearest neighbor rule, and to choose between parametric and nonparametric rules

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:10 ,  Issue: 4 )