By Topic

Class-dependent discretization for inductive learning from continuous and mixed-mode data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ching, J.Y. ; Dept. of Syst. Design Eng., Waterloo Univ., Ont., Canada ; Wong, Andrew K.C. ; Chan, K.C.C.

Inductive learning systems can be effectively used to acquire classification knowledge from examples. Many existing symbolic learning algorithms can be applied in domains with continuous attributes when integrated with a discretization algorithm to transform the continuous attributes into ordered discrete ones. In this paper, a new information theoretic discretization method optimized for supervised learning is proposed and described. This approach seeks to maximize the mutual dependence as measured by the interdependence redundancy between the discrete intervals and the class labels, and can automatically determine the most preferred number of intervals for an inductive learning application. The method has been tested in a number of inductive learning examples to show that the class-dependent discretizer can significantly improve the classification performance of many existing learning algorithms in domains containing numeric attributes

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:17 ,  Issue: 7 )