By Topic

Deformable kernels for early vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
P. Perona ; Dept. of Eng. & Appl. Sci., California Inst. of Technol., Pasadena, CA, USA

Early vision algorithms often have a first stage of linear-filtering that `extracts' from the image information at multiple scales of resolution and multiple orientations. A common difficulty in the design and implementation of such schemes is that one feels compelled to discretize coarsely the space of scales and orientations in order to reduce computation and storage costs. A technique is presented that allows: 1) computing the best approximation of a given family using linear combinations of a small number of `basis' functions; and 2) describing all finite-dimensional families, i.e., the families of filters for which a finite dimensional representation is possible with no error. The technique is based on singular value decomposition and may be applied to generating filters in arbitrary dimensions and subject to arbitrary deformations. The relevant functional analysis results are reviewed and precise conditions for the decomposition to be feasible are stated. Experimental results are presented that demonstrate the applicability of the technique to generating multiorientation multi-scale 2D edge-detection kernels. The implementation issues are also discussed

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:17 ,  Issue: 5 )