By Topic

Silhouette-based isolated object recognition through curvature scale space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Mokhtarian, F. ; Dept. of Electron. & Electr. Eng., Surrey Univ., Guildford, UK

A complete, fast and practical isolated object recognition system has been developed which is very robust with respect to scale, position and orientation changes of the objects as well as noise and local deformations of shape (due to perspective projection, segmentation errors and non-rigid material used in some objects). The system has been tested on a wide variety of three-dimensional objects with different shapes and material and surface properties. A light-box setup is used to obtain silhouette images which are segmented to obtain the physical boundaries of the objects which are classified as either convex or concave. Convex curves are recognized using their four high-scale curvature extrema points. Curvature scale space (CSS) representations are computed for concave curves. The CSS representation is a multi-scale organization of the natural, invariant features of a curve (curvature zero-crossings or extrema) and useful for very reliable recognition of the correct model since it places no constraints on the shape of objects. A three-stage, coarse-to-fine matching algorithm prunes the search space in stage one by applying the CSS aspect ratio test. The maxima of contours in CSS representations of the surviving models are used for fast CSS matching in stage two. Finally, stage three verifies the best match and resolves any ambiguities by determining the distance between the image and model curves. Transformation parameter optimization is then used to find the best fit of the input object to the correct model

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:17 ,  Issue: 5 )