Cart (Loading....) | Create Account
Close category search window
 

Mixture decomposition for distributions from the exponential family using a generalized method of moments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sum, S.T. ; Sch. of Comput. Sci., Carleton Univ., Ottawa, Ont., Canada ; Oommen, B.J.

A finite mixture distribution consists of the superposition of a finite number of component probability densities, and is typically used to model a population composed of two or more subpopulations. Mixture models find utility in situations where there is a difficulty in directly observing the underlying components of the population of interest. This paper examines the method of moments as a general estimation technique for estimating the parameters of the component distributions and their mixing proportions. It is shown that the same basic solution can be applied to any continuous or discrete density from the exponential family with a known common shape parameter. Results of an empirical study of the method are also presented

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:25 ,  Issue: 7 )

Date of Publication:

Jul 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.