By Topic

Trellis-oriented decomposition and trellis complexity of composite-length cyclic codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Berger, Y. ; Dept. of Electr. Eng. Syst., Tel Aviv Univ., Israel ; Be'ery, Y.

The trellis complexity of composite-length cyclic codes (CLCC's) is addressed. We first investigate the trellis properties of concatenated and product codes in general. Known factoring of CLCC's into concatenated subcodes is thereby employed to derive upper bounds on the minimal trellis size and state-space profile. New decomposition of CLCC's into product subcodes is established and utilized to derive further upper hounds on the trellis parameters. The coordinate permutations that correspond to these bounds are exhibited. Additionally, new results on the generalized Hamming weights of CLCC's are obtained. The reduction in trellis complexity of many CLCC's leads to soft-decision decoders with relatively low complexity

Published in:

Information Theory, IEEE Transactions on  (Volume:41 ,  Issue: 4 )