Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

The computation of visible-surface representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Terzopoulos, D. ; Schlumberger Palo Alto Res., CA, USA

A computational theory of visible-surface representations is developed. The visible-surface reconstruction process that computes these quantitative representations unifies formal solutions to the key problems of: (1) integrating multiscale constraints on surface depth and orientation from multiple-visual sources; (2) interpolating dense, piecewise-smooth surfaces from these constraints; (3) detecting surface depth and orientation discontinuities to apply boundary conditions on interpolation; and (4) structuring large-scale, distributed-surface representations to achieve computational efficiency. Visible-surface reconstruction is an inverse problem. A well-posed variational formulation results from the use of a controlled-continuity surface model. Discontinuity detection amounts to the identification of this generic model's distributed parameters from the data. Finite-element shape primitives yield a local discretization of the variational principle. The result is an efficient algorithm for visible-surface reconstruction

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:10 ,  Issue: 4 )