By Topic

A synthesis and optimization procedure for fully and easily testable sequential machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. Devadas ; Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA ; H. -K. T. Ma ; A. R. Newton ; A. Sangiovanni-Vincentelli

The authors outline a synthesis procedure which beginning from a state transition graph (STG) description of a sequential machine produces an optimized fully and easily testable logic implementation. This logic-level implementation is guaranteed to be testable for all single stuck-at faults in the combinational logic and the test sequences for these faults can be obtained using combinational test generation techniques alone. The sequential machine is assumed to have a reset state and be R-reachable. All single stuck-at faults in the combinational logic and the input and output stuck-at faults of the memory elements in the synthesized logic-level automaton can be tested without access to the memory elements using these test sequences. Thus this procedure represents an alternative to a scan design methodology. The area penalty incurred due to the constraints on the optimization are small. The performance of the synthesized design is usually better than that of an unconstrained design optimized for area alone. The authors show that an intimate relationship exists between state assignment and the testability of a sequential machine. They propose a procedure of constrained state assignment and logic optimization which guarantees testability for both Moore and Mealy machines

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:8 ,  Issue: 10 )