By Topic

Temperature dependence modeling for MOS VLSI circuit simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chung-Ping Wan ; Inf. Sci. Inst., Univ of Southern California, Los Angeles, CA, USA ; Sheu, B.J.

An accurate and efficient temperature modeling methodology for the semiempirical BSIM (Berkeley short-channel IGFET model) has been developed for MOS VLSI circuit simulation. A sensitive model parameter subset which has large effects on transistor output characteristics is determined from the sensitivity analysis. Updating of model parameter values for this sensitive subset is performed prior to circuit simulation at each given temperature. For a 1.2 μm CMOS process, the sensitive subset for temperature effects consists of only eight out of the 67 BSIM parameters. Circuit simulation using this sensitive subset approach to predict temperature effects has shown good agreement with experimental data on transistor output characteristics, inverter transfer characteristics, and oscillation frequency of a 31-stage ring oscillator

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:8 ,  Issue: 10 )