By Topic

Algorithms for asynchronous parallel processing of object-oriented databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thakore, A.K. ; IBM Corp., Boca Raton, FL, USA ; Su, S.Y.W. ; Lam, H.X.

Management of large quantities of complex data is essential in many advanced application areas. Object-oriented (OO) database management system have been developed to effectively model and process the complex domain knowledge. They have been shown to outperform some existing relational systems. The existing implementations of OO database management systems attempt to improve the efficiency of OO queries by explicitly capturing the relationships among objects. However, the execution of complex queries involving the retrieval of objects from many classes and relationships among them causes the existing system to operate inefficiently. In this paper, we present parallel algorithms for the processing of queries against a large OO database. The algorithms are based on a closed model of query processing pattern-based access instead of the conventional value-based access. During processing, the algorithms avoid the execution of time-consuming join operations by making use of the explicitly stored object associations. Generation of large quantities of temporary data is avoided by marking objects using their identifiers and by employing a two-phase query processing strategy. A query is processed by concurrent multiple waves, thereby improving parallelism avoiding the complexities introduced in their sequential implementation. The correctness and the performance of the parallel algorithms have been tested and analyzed by running parallel programs on a 32-node transputer based parallel machine designed and developed at the IBM Research Center at Yorktown Heights, New York. Benchmark queries of different semantic complexities are generated, and their performance is analyzed for various data and query parameters

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:7 ,  Issue: 3 )