By Topic

WFS + branch and bound = stable models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Subrahmanian, V.S. ; Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA ; Nau, D. ; Vago, C.

Though the semantics of nonmonotonic logic programming has been studied extensively, relatively little work has been done on operational aspects of these semantics. In this paper, we develop techniques to compute the well-founded model of a logic program. We describe a prototype implementation and show, based on experimental results, that our technique is more efficient than the standard alternating fixpoint computation. Subsequently, we develop techniques to compute the set of all stable models of a deductive database. These techniques first compute the well-founded semantics and then use an intelligent branch and bound strategy to compute the stable models. We report on our implementation, as well as on experiments that we have conducted on the efficiency of our approach

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:7 ,  Issue: 3 )