Cart (Loading....) | Create Account
Close category search window
 

Loss-imbalance equalization in arrayed waveguide-grating (AWG) multiplexer cascades

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ishida, O. ; NTT Opt. Network Syst. Labs., Kanagawa, Japan ; Takahashi, H.

How to connect arrayed-waveguide-grating (AWG) multiplexers in cascade is discussed with the goal of equalizing the loss imbalance among frequency-division-multiplexed (FDM) channels. This paper proposes to average the FDM-channel loss over the cascaded multiplexers by shifting port connections between each adjacent multiplexer. A simulation predicts that, in a cascade of M periodic N×N multiplexers, shifting the connections by N/M reduces the loss imbalance from MΔα to Δα/M where Δα [dB] denotes the loss imbalance per multiplexer. This improvement will extend the cascadable node number in all-optical FDM networks. The prediction is confirmed experimentally in an optical add-drop filter (M=2) constructed with a silica-based AWG 16×16 multiplexer; the largest loss difference among 15 FDM channels is reduced from 5.0 dB to 1.5 dB. This paper also reports that imperfect multiplexer periodicity due to waveguide dispersion restricts the equalizable frequency bandwidth to less than several free spectral ranges (FSR's)

Published in:

Lightwave Technology, Journal of  (Volume:13 ,  Issue: 6 )

Date of Publication:

Jun 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.