By Topic

Application of a generalized probabilistic descent method to recurrent neural network based speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sin-Horng Chen ; Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Yuan-Fu Liao ; Wen-Yuan Chen

A new method is proposed to train recurrent neural networks (RNNs) for speech recognition such that the difficulty of selecting appropriate target functions can be avoided. A novel architecture of the RNN-based speech recognition system is also introduced for solving the problem related to large vocabulary speech recognition. Additionally, the proposed RNN-based recognizer is found to have the advantages of being capable of absorbing the temporal variation of speech patterns as well as possessing effective discrimination capabilities. Performance of the proposed system was examined using two speech recognition tasks of recognizing 10 Mandarin digits and 54 confusable Mandarin syllables. Experimental results show that the proposed method outperforms both the continuous observation densities hidden Markov models method and a RNN recognizer using the extended back propagation training algorithm

Published in:

Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Conference on  (Volume:ii )

Date of Conference:

19-22 Apr 1994