By Topic

Supervised hidden Markov modeling for on-line handwriting recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bellegarda, J.R. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Nahamoo, D. ; Nathan, K.S. ; Bellegarda, E.J.

The performance of a large alphabet handwriting recognition system based on a probabilistic framework is critically tied to the quality of the prototype distributions that are established in the relevant feature space. To better account for handwriting variability, we describe a supervised strategy for the construction of prototype distributions which are more robust to allograph deformations. The idea is to incorporate supervision to relate the allographic models to their manifestations in the feature space. This makes for a better utilization of the available training data, while at the same time allowing for a short design time turn around. The performance of this method is illustrated on a discrete handwriting recognition task with an alphabet of 81 characters

Published in:

Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Conference on  (Volume:v )

Date of Conference:

19-22 Apr 1994