By Topic

Characteristic-based algorithms for solving the Maxwell equations in the time domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shang, J.S. ; Wright Lab., Wright-Patterson AFB, OH, USA

Several numerical algorithms, developed in the computational-fluid-dynamics community for solving the Euler equations, are found to be equally effective for solving the Maxwell equations in the time domain. The basic approach of these numerical procedures is to achieve the Riemann approximation to the time-dependent, three-dimensional problem in each spatial direction. The three-dimensional equations are then solved by a sequence of one-dimensional problems. This approach is referred to as a characteristic-based method. The basic algorithm can be implemented for both finite-difference and finite-volume procedures, and has the potential to eliminate the spurious-wave reflections from the numerical boundaries of the computational domain. The formulation and relative merit of the finite-difference and the finite-volume approximations are presented, together with numerical results from these procedures

Published in:

Antennas and Propagation Magazine, IEEE  (Volume:37 ,  Issue: 3 )