By Topic

Real-time collision avoidance for redundant manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Glass, K. ; Dept. of Mech. Eng., New Mexico State Univ., Las Cruces, NM, USA ; Colbaugh, R. ; Lim, D. ; Seraji, H.

This paper presents a simple and robust approach to achieving collision avoidance for kinematically redundant manipulators at the control-loop level. The proposed scheme represents the obstacle avoidance requirement as inequality constraints in the manipulator workspace, and ensures that these inequalities are satisfied while the end-effector tracks the desired trajectory. The control scheme is the damped-least-squares formulation of the configuration control approach implemented as a kinematic controller. Computer simulation and experimental results are given for a Robotics Research 7 DOF redundant arm and demonstrate the collision avoidance capability for reaching inside a truss structure. These results confirm that the proposed approach provides a simple and effective method for real-time collision avoidance

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:11 ,  Issue: 3 )