Cart (Loading....) | Create Account
Close category search window
 

Event-averaged maximum likelihood estimation and mean-field theory in multitarget tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kastella, K. ; UNISYS Gov. Syst. Corp., St. Paul, MN, USA

This paper presents a novel type of Kalman filter for track maintenance in multitarget tracking using thresholded sensor data at high target/clutter densities and low detection levels. The filter is robust against tracking errors induced by crossing tracks, clutter, and missed detections, and the computational complexity of the filter scales well with problem size. There are two key features that differentiate this approach from earlier work. First, to reduce computational load, the filter exploits techniques from statistical field theory to simplify measurement to track association by using a mean-field approximation to sum over associations. Second, to enhance tracking of close together targets, the filter explicitly models the error correlations that occur between such target pairs. These error correlations are caused by measurement to track association ambiguities that arise when target separations are comparable to sensor measurement errors

Published in:

Automatic Control, IEEE Transactions on  (Volume:40 ,  Issue: 6 )

Date of Publication:

Jun 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.