By Topic

Moving horizon observers and observer-based control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Michalska, H. ; Dept. of Electr. Eng., McGill Univ., Montreal, Que., Canada ; Mayne, D.Q.

In this paper two topics are explored. A new approach to the problem of obtaining an estimate of the state of a nonlinear system is proposed. The moving horizon observer produces an estimate of the state of the nonlinear system at time t either by minimizing, or approximately minimizing, a cost function over the preceding interval (horizon) [t-T,t]; as t advances, so does the horizon. Convergence of the estimator is established under the assumption that the corresponding global optimization problem can be (approximately) solved and a uniform reconstructability condition is satisfied; the latter condition is automatically satisfied for linear observable systems. The utility of the estimator for receding horizon control is explored. In particular, stability of a composite moving horizon system, comprising a moving horizon regulator and a moving horizon observer, is established

Published in:

Automatic Control, IEEE Transactions on  (Volume:40 ,  Issue: 6 )