By Topic

Generalised scheme for optimal learning in recurrent neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shanmukh, K. ; Dept. of Electr. Eng., Indian Inst. of Sci., Bangalore, India ; Venkatesh, Y.V.

A new learning scheme is proposed for neural network architectures like the Hopfield network and bidirectional associative memory. This scheme, which replaces the commonly used learning rules, follows from the proof of the result that learning in these connectivity architectures is equivalent to learning in the 2-state perceptron. Consequently, optimal learning algorithms for the perceptron can be directly applied to learning in these connectivity architectures. Similar results are established for learning in the multistate perceptron, thereby leading to an optimal learning algorithm. Experimental results are provided to show the superiority of the proposed method

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:142 ,  Issue: 2 )