By Topic

Mobile robot navigation using the range-weighted Hough transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Forsberg, J. ; Robotics & Autom., Lund Inst. of Technol., Sweden ; Larsson, U. ; Wernersson, A.

Accurate navigation of a mobile robot in cluttered rooms using a range-measuring laser as a sensor has been achieved. To extract the directions and distances to the walls of the room the range-weighted Hough transform is used. The following experimental results are emphasized: The robot extracts the walls of the surrounding room from the range measurements. The distances between parallel walls are estimated with a standard deviation smaller than 1 cm. It is possible to navigate the robot along any preselected trajectory in the room. One special case is navigation through an open door detected by the laser. The accuracy of the passage is 1 cm at a speed of 0.5 m/s. The trajectory is perpendicular to the wall within 0.5 degrees in angle. When navigating through corridors, the accuracy is better than 1 cm at 0.8 m/s-the maximum speed of the robot. Odometric data and laser measurements are combined using the extended Kalman filter. The size of the cluttered rectangular room and the position and orientation (pose) of the robot are estimated during motion. The extraction and the resulting navigation are very robust against both spurious measurements in the laser measurements and disturbing objects

Published in:

Robotics & Automation Magazine, IEEE  (Volume:2 ,  Issue: 1 )