By Topic

Finite prolate spheroidal sequences and their applications. II. Image feature description and segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wilson, R. ; Dept. of Comput. Sci., Warwick Univ., Coventry, UK ; Spann, M.

For pt.I see ibid., vol.9, no.6, p.787 (1987). The problem of uncertainty in image feature description is discussed, and it is shown how finite prolate spheroidal sequences can be used in the construction of feature descriptions that combine spatial and frequency-domain locality in an optimal way. Methods of constructing such optimal feature sets, which are suitable for graphical implementation, are described, and some generalizations of the quadtree concept are presented. These methods are illustrated by examples from image processing applications, including feature extraction and texture description. The problem of image segmentation is discussed, and the importance of scale invariance in overcoming the limitations imposed by uncertainty is demonstrated. A novel texture segmentation algorithm that is based on a combination of the new feature description and multiresolution techniques is described and shown to give accurate segmentations on a range of synthetic and natural textures

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:10 ,  Issue: 2 )