By Topic

Tone recognition of isolated Cantonese syllables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tan Lee ; Dept. of Electron. Eng., Chinese Univ. of Hong Kong, Shatin, Hong Kong ; Ching, P.C. ; Chan, L.W. ; Cheng, Y.H.
more authors

Tone identification is essential for the recognition of the Chinese language, specifically far Cantonese which is well known for being very rich in tones. The paper presents an efficient method for tone recognition of isolated Cantonese syllables. Suprasegmental feature parameters are extracted from the voiced portion of a monosyllabic utterance and a three-layer feedforward neural network is used to classify these feature vectors. Using a phonologically complete vocabulary of 234 distinct syllables, the recognition accuracy for single-speaker and multispeaker is given by 89.0% and 87.6% respectively

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:3 ,  Issue: 3 )