By Topic

Distributed system-level control of vehicles in a high-performance material transfer system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Duffie, N.A. ; Lab. for Appl. Manuf. Control, Manuf. Syst. Eng., Wisconsin Univ., Madison, WI, USA ; Prabhu, V.V.

In this paper, a fully-distributed system-level control architecture is described for dispatching, routing, and collision avoidance of multiple passive vehicles moving in a guideway network formed by a multitude of propulsion units. Propulsion units cooperate using a communication network with a topology identical to that of the guideway network, eliminating the need for explicit knowledge of global topography and enabling rapid real-time response to service requests using a parallel, shortest-route algorithm. The concepts developed are applied to a high-performance system in which vehicles respond to spontaneous requests to transfer material from point to point in manufacturing facilities in seconds rather than the minutes required in conventional AGV and conveyor systems. In this application, the vehicle and propulsion-unit lengths are on the same order of magnitude, the propulsion-unit-length/maximum-vehicle-velocity time characteristic is small, and the ratio of the number of propulsion units to the number of vehicles is large

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:3 ,  Issue: 2 )