By Topic

Object imaging with a piezoelectric robotic tactile sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kolesar, Edward S. ; Dept. of Eng., Christian Univ., Fort Worth, TX, USA ; Dyson, Craig S.

A two-dimensional, electrically multiplexed robotic tactile sensor was realized by coupling a piezoelectric polyvinylidene fluoride (PVDF) polymer film to a monolithic silicon integrated circuit (IC). The IC incorporates 64 sensor electrodes arranged in a symmetrical 8×8 matrix. Each electrode occupies a 400×400 μm square area, and they are separated from each other by 300 μm. A 40-μm-thick piezoelectric PVDF polymer film was attached to the electrode array with an electrically nonconductive methane adhesive. The response of the tactile sensor is linear for loads spanning 0.8-135 grams-of-force (gmf) (0.00-1.35 Newtons (N)). The response bandwidth is 25 Hz, the hysteresis level is tolerable, and, for operation in the sensor's linear range, taxel crosstalk is negligible. The historically persistent stability and response reproducibility limitation associated with piezoelectric-based tactile sensors has been solved by implementing a novel pre-charge voltage bias technique to initialize the pre- and post-load sensor responses. A rudimentary tactile object image measurement procedure for applied loads has been devised to recognize the silhouette of a sharp edge, square, trapezoid, isosceles triangle, circle, toroid, slotted screw, and cross-slotted screw

Published in:

Microelectromechanical Systems, Journal of  (Volume:4 ,  Issue: 2 )