By Topic

Segmentation through variable-order surface fitting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. J. Besl ; Dept. of Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; R. C. Jain

The solution of the segmentation problem requires a mechanism for partitioning the image array into low-level entities based on a model of the underlying image structure. A piecewise-smooth surface model for image data that possesses surface coherence properties is used to develop an algorithm that simultaneously segments a large class of images into regions of arbitrary shape and approximates image data with bivariate functions so that it is possible to compute a complete, noiseless image reconstruction based on the extracted functions and regions. Surface curvature sign labeling provides an initial coarse image segmentation, which is refined by an iterative region-growing method based on variable-order surface fitting. Experimental results show the algorithm's performance on six range images and three intensity images

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:10 ,  Issue: 2 )