By Topic

A Markov random field model-based approach to unsupervised texture segmentation using local and global spatial statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kervrann, C. ; IRISA/INRIA, Rennes, France ; Heitz, F.

Many studies have proven that statistical model-based texture segmentation algorithms yield good results provided that the model parameters and the number of regions be known a priori. In this correspondence, we present an unsupervised texture segmentation method that does not require knowledge about the different texture regions, their parameters, or the number of available texture classes. The proposed algorithm relies on the analysis of local and global second and higher order spatial statistics of the original images. The segmentation map is modeled using an augmented-state Markov random field, including an outlier class that enables dynamic creation of new regions during the optimization process. A Bayesian estimate of this map is computed using a deterministic relaxation algorithm. Results on real-world textured images are presented

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 6 )