Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Iterative maximum likelihood displacement field estimation in quantum-limited image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chan, C.L. ; PAR Gov. Syst. Corp., La Jolla, CA, USA ; Katsaggelos, A.K.

We develop an algorithm for obtaining the maximum likelihood (ML) estimate of the displacement vector field (DVP) from two consecutive image frames of an image sequence acquired under quantum-limited conditions. The estimation of the DVF has applications in temporal filtering, object tracking, stereo matching, and frame registration in low-light level image sequences as well as low-dose clinical X-ray image sequences. In the latter case, a controlled X-ray dosage reduction may be utilized to lower the radiation exposure to the patient and the medical staff. The quantum-limited effect is modeled as an undesirable, Poisson-distributed, signal-dependent noise artifact. A Fisher-Bayesian formulation is used to estimate the DVF and a block component search algorithm is employed in obtaining the solution. Several experiments involving a phantom sequence and a teleconferencing image sequence with realistic motion demonstrate the effectiveness of this estimator in obtaining the DVF under severe quantum noise conditions (20-25 events/pixel)

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 6 )