By Topic

A clustering algorithm for entropy-constrained vector quantizer design with applications in coding image pyramids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. P. de Garrido ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; W. A. Pearlman ; W. A. Finamore

A clustering algorithm for the design of efficient vector quantizers to be followed by entropy coding is proposed. The algorithm, called entropy-constrained pairwise nearest neighbor (ECPNN), designs codebooks by merging the pair of Voronoi regions which gives the least increase in distortion for a given decrease in entropy. The algorithm can be used as an alternative to the entropy-constrained vector quantizer design (ECVQ) proposed by Chou, Lookabaugh, and Gray (1989). By a natural extension of the ECPNN algorithm the authors develop another algorithm that designs alphabet and entropy-constrained vector quantizers and call it alphabet- and entropy-constrained pairwise nearest neighbor (AECPNN) design. Through simulations on synthetic sources, it is shown that ECPNN and ECVQ have indistinguishable mean-square-error versus rate performance and that the ECPNN and AECPNN algorithms obtain as close performance by the same measure as the ECVQ and AECVQ (Rao and Pearlman, 1993) algorithms. The advantages over ECVQ are that the ECPNN approach enables much faster codebook design and uses smaller codebooks. A single pass through the ECPNN (or AECPNN) design algorithm, which progresses from larger to successively smaller rates, allows the storage of any desired number of intermediate codebooks. In the context of multirate subband (or transform) coders, this feature is especially desirable. The performance of coding image pyramids using ECPNN and AECPNN codebooks at rates from 1/3 to 1.0 bit/pixel is discussed

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:5 ,  Issue: 2 )