By Topic

Efficient fast Hartley transform algorithms for hypercube-connected multicomputers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. Aykanat ; Dept. of Comput. Eng., Bilkent Univ., Ankara, Turkey ; A. Dervis

Although fast Hartley transform (FHT) provides efficient spectral analysis of real discrete signals, the literature that addresses the parallelization of FHT is extremely rare. FHT is a real transformation and does not necessitate any complex arithmetics. On the other hand, FHT algorithm has an irregular computational structure which makes efficient parallelization harder. In this paper, we propose an efficient restructuring for the sequential FHT algorithm which brings regularity and symmetry to the computational structure of the FHT. Then, we propose an efficient parallel FHT algorithm for medium-to-coarse grain hypercube multicomputers by introducing a dynamic mapping scheme for the restructured FHT. The proposed parallel algorithm achieves perfect load-balance, minimizes both the number and volume of concurrent communications, allows only nearest-neighbor communications and achieves in-place computation and communication. The proposed algorithm is implemented on a 32 node iPSC/2 hypercube multicomputer, high-efficiency values are obtained even for small size FHT problems

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:6 ,  Issue: 6 )