Cart (Loading....) | Create Account
Close category search window
 

Nonlinear approximation method in Lagrangian relaxation-based algorithms for hydrothermal scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaohong Guan ; Pacific Gas & Electr. Co., San Francisco, CA, USA ; Luh, P.B. ; Lan Zhang

When the Lagrangian relaxation technique is used to solve hydrothermal scheduling problems, many subproblems have linear stage-wise cost functions. A well recognized difficulty is that the solutions to these subproblems may oscillate between maximum and minimum generations with slight changes of the multipliers. Furthermore, the subproblem solutions may become singular, i.e., they are undetermined when the linear coefficients become zero. This may result in large differences between subproblem solutions and the optimal primal schedule. In this paper, a nonlinear approximation method is presented which utilizes nonlinear functions, quadratic in this case, to approximate relevant linear cost functions. The analysis shows that the difficulty associated with solution oscillation is reduced, and singularity is avoided. Extensive testing based on Northeast Utilities data indicates that the method consistently generates better schedules than the standard Lagrangian relaxation method

Published in:

Power Systems, IEEE Transactions on  (Volume:10 ,  Issue: 2 )

Date of Publication:

May 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.