By Topic

Inertial and slow coherency aggregation algorithms for power system dynamic model reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. H. Chow ; Dept. of Electr. Power Eng., Rensselaer Polytech. Inst., Troy, NY, USA ; R. Galarza ; P. Accari ; W. W. Price

This paper presents new aggregation algorithms for obtaining reduced order power networks when coherent generators are aggregated. The generation terminal bus aggregation algorithm in the EPRI DYNRED software tends to stiffen the reduced order network during the aggregation process, thus increasing the frequencies of inter-area modes. The inertial and slow coherency aggregations will decrease the stiffening effect and produce, for the same coherent machine groups, aggregate networks with improved inter-area mode approximations. This paper contains new procedures to construct these aggregate networks and demonstrates the benefits of these new aggregate networks on a 48-machine power system using eigenvalues and nonlinear simulations

Published in:

IEEE Transactions on Power Systems  (Volume:10 ,  Issue: 2 )