By Topic

Intraoperative tumor detection: relative performance of single-element, dual-element, and imaging probes with various collimators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hartsough, N.E. ; Opt. Sci. Center, Arizona Univ., Tucson, AZ, USA ; Barrett, H.H. ; Barber, H.B. ; Woolfenden, J.M.

Accurate tumor staging depends on finding all tumor sites, and curative surgery requires the removal of ail cancerous tissue from those sites. One technique for locating tumors is to inject patients before surgery with a radiotracer that is preferentially taken up by cancerous tissue. Then, an intraoperative gamma-sensitive probe is used to locate the tumors. Small (<1-cm diameter) tumors, often undetectable by external imaging and by the standard surgical inspection with sight and touch, can be found with probes, Simple calculations and measurements with radioactive tumor models show that small tumors should be detected by single-element probes, but often such probes fail to detect these small tumors in practice. This discrepancy is often caused by the use of a uniform background to predict probe performance, Real backgrounds are nonuniform and can decrease probe performance dramatically. Dual-element, coincidence, or imaging probes may solve the background problem. The authors devised a method to predict probe performance in a realistic background which includes variations in normal organ uptakes. They predict the relative performance of both existing probes and those in the design stage so that optimal detector and collimator configurations can be determined. The procedure includes a Monte-Carlo-calculated point-response function, a numerical torso phantom, and measured biodistributions of a monoclonal antibody. The Hotelling Trace Value, a measure of tumor-detection performance, is computed from the probe responses in simulated studies

Published in:

Medical Imaging, IEEE Transactions on  (Volume:14 ,  Issue: 2 )