By Topic

Directional low-pass filtering for improved accuracy and reproducibility of stenosis quantification in coronary arteriograms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ying Sun ; Dept. of Electr. Eng., Rhode Island Univ., Kingston, RI, USA ; Lucariello, R.J. ; Chiaramida, S.A.

Considers the quantification of percent diameter stenosis in digital coronary arteriograms of low spatial resolution. To improve accuracy and reproducibility an edge-preserving smoothing method, called the directional low-pass filter (DLF), was developed to suppress quantum noise by averaging image intensity in a direction parallel to the vessel border. Accuracy of stenosis quantification was assessed by using stenosis phantoms. The standard error of the estimate (SEE) was 0.76 pixel-length (p) without spatial filtering and further reduced to 0.50 p by DLF; the average deviation as a measure of the regularity of border definition was also reduced by DLF from 1.00 to 0.68 p (n=50, P<0.001). It was shown that the DLF outperformed the conventional moving average filter and median filter. Reproducibility in terms of intraframe variability was assessed by using coronary arteriograms obtained from 10 patients. Intraframe variability of the percent stenosis measurements was reduced from 3.5% to 2.9% by DLF (n=10, P<0.005). An analysis of variance showed, however, that the interframe variability cannot be reduced by any of the spatial filters under investigation. The result of this study has provided a guideline for angiographically based quantification of percent stenosis under limited imaging resolution and suggests a new method for improving accuracy and reproducibility by directional low-pass filtering

Published in:

Medical Imaging, IEEE Transactions on  (Volume:14 ,  Issue: 2 )