By Topic

Study and design of step-index channel waveguide bends with large-angle and low-loss characteristics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Han-Bin Lin ; Dept. of Electr. Eng., China Inst. of Technol. & Commerce, Taipei, Taiwan ; Su, J.-Y. ; Yu-Pin Liao ; Wang, Way‐Seen

By using micro-prisms, improved three-dimensional (3-D) bends of the embedded and buried waveguides of step-index profile are proposed. A simple phase compensation rule for the optimal design of the micro-prism is also presented. Through the simulation of 3-D semivectorial finite-difference beam propagation method, the transmission characteristics of the improved bends are shown to have been enhanced dramatically as compared with those of the conventional ones. Even for a bend angle of as large as 10°, the normalized transmitted power can still be greater than 95%. These results of 3-D bends are then compared with those of the two-dimensional (2-D) ones which are simplified from 3-D structures by the effective index method, and physical explanation of the discrepancy between the 3-D and 2-D results is introduced. The influences of waveguide structures and prism parameters on the transmission characteristics are discussed in detail. Some criteria for the design of large-angle low-loss 3-D improved bends are also accessed

Published in:

Quantum Electronics, IEEE Journal of  (Volume:31 ,  Issue: 6 )