Cart (Loading....) | Create Account
Close category search window

Optimization of the optical output in a C-to-C pulsed gas laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Persephonis, P. ; Dept. of Phys., Patras Univ., Greece ; Giannetas, V. ; Parthenios, J. ; Ioannou, A.
more authors

An investigation of the optimum condition for maximum optical output in a C-to-C pulsed gas laser (N2 laser) showed that this condition does not happen when the two capacitances are equal (C 1=C2) as this happens in the “Doubling circuit” case, but when the peaking capacitance obtains a critical value. This behavior is attributed to the electric pumping pulse formed by the temporary loading of the peaking capacitor. This electric pumping pulse increases as the peaking capacitor increases. However, for low values of the peaking capacitor the optical output follows the rise of the electric pumping pulse. On the other hand, for higher values of the peaking capacitor than a critical one, a part of the electric energy arrives at the laser channel after the laser output, while the exploitable electric energy decreases causing reduction of the optical output

Published in:

Quantum Electronics, IEEE Journal of  (Volume:31 ,  Issue: 6 )

Date of Publication:

Jun 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.