Cart (Loading....) | Create Account
Close category search window
 

Comparison of generalized Gaussian and Laplacian modeling in DCT image coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Joshi, R.L. ; Sch. of Electr. & Comput. Eng., Washington State Univ., Pullman, WA, USA ; Fischer, T.R.

Generalized Gaussian and Laplacian source models are compared in discrete cosine transform (DCT) image coding. A difference in peak signal to noise ratio (PSNR) of at most 0.5 dB is observed for encoding different images. We also compare maximum likelihood estimation of the generalized Gaussian density parameters with a simpler method proposed by Mallat (1989). With block classification based on AC energy, the densities of the DCT coefficients are much closer to the Laplacian or even the Gaussian.<>

Published in:

Signal Processing Letters, IEEE  (Volume:2 ,  Issue: 5 )

Date of Publication:

May 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.