Cart (Loading....) | Create Account
Close category search window
 

Multivariate classification through adaptive Delaunay-based C° spline approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cubanski, D. ; Acuity Imaging Inc., Nashua, NH, USA ; Cyganski, David

This paper introduces a new method for adaptively building a multivariate C° spline approximation from scattered samples of an unknown function. The central feature of the method is a means for adaptively tesselating an approximation space to form a multidimensional mesh over which the spline fitting then occurs. The mesh used is a Delaunay tesselation of the approximation space whose vertices lie at a subset of the scattered sample locations. The specific subset of sample locations used is adaptively determined by repeated overfitting and simplification of the resulting spline approximation. Overfitting and simplification is an attractive paradigm for high-dimensional approximation problems because it provides a means for forming an approximation that is complex only in regions where the scattered sample data provide sufficient evidence of complexity in the underlying unknown function. Overfitting and simplification is effectively exploited in this new approach as the function representation used is not subject to certain recursive dependencies. The properties of the new technique are demonstrated in the context of an easily visualized bivariate classification problem, The technique is then applied to a 10-dimensional clinical ECG classification problem, and the results are compared to those obtained with a perceptron based neural network.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:17 ,  Issue: 4 )

Date of Publication:

Apr 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.